Preprint

Deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear partial differential equations



Details zur Publikation
Autor(inn)en:
Cioica-Licht, P.; Hutzenthaler, M.; Werner, P.

Publikationsjahr:
2022
Zeitschrift:
arXiv Preprint
Seitenbereich:
1-34
Abkürzung der Fachzeitschrift:
arXiv
DOI-Link der Erstveröffentlichung:


Zusammenfassung, Abstract
We prove that deep neural networks are capable of approximating solutions of semilinear Kolmogorov PDE in the case of gradient-independent, Lipschitz-continuous nonlinearities, while the required number of parameters in the networks grow at most polynomially in both dimension {\$}d $\backslash$in \mathbbN{\$} and prescribed reciprocal accuracy {\$}$\backslash$varepsilon{\$}. Previously, this has only been proven in the case of semilinear heat equations.


Autor(inn)en / Herausgeber(innen)

Zuletzt aktualisiert 2023-16-06 um 14:09