Preprint

Strong convergence rates on the whole probability space for space-time discrete numerical approximation schemes for stochastic Burgers equations



Details zur Publikation
Autor(inn)en:
Hutzenthaler, M.; Jentzen, A.; Lindner, F.; Pušnik , P.

Publikationsjahr:
2019
Zeitschrift:
arXiv Preprint
Seitenbereich:
1-60
Abkürzung der Fachzeitschrift:
arXiv
DOI-Link der Erstveröffentlichung:


Zusammenfassung, Abstract
The main result of this article establishes strong convergence rates on the whole probability space for explicit space-time discrete numerical approximations for a class of stochastic evolution equations with possibly non-globally monotone coefficients such as stochastic Burgers equations with additive trace-class noise. The key idea in the proof of our main result is (i) to bring the classical Alekseev-Gröbner formula from deterministic analysis into play and (ii) to employ uniform exponential moment estimates for the numerical approximations. 60 pages


Autor(inn)en / Herausgeber(innen)

Zuletzt aktualisiert 2023-19-06 um 11:00