Journal article

Mechanical properties of boron-nitride nanotubes after intense femtosecond-laser excitation.



Publication Details
Authors:
Bauerhenne, B.; Zijlstra, E.; Kalitsov, A.; Garcia, M.

Publication year:
2014
Journal:
Nanotechnology
Pages range :
145701
Volume number:
25
Issue number:
14
ISSN:
0957-4484
DOI-Link der Erstveröffentlichung:


Abstract
A femtosecond-laser pulse constitutes an unconventional tool to manipulate solids and nanostructures, for it may excite materials in a transient nonthermal state with hot electrons and atoms close to their initial temperature. Here we study the Young's modulus and the electronic band gap of a (5, 0) zigzag boron-nitride nanotube (BNNT) after an ultrashort laser pulse excitation using density functional theory, where the effect of a femtosecond-laser pulse is modelled by an instantaneous rise of the electronic temperature. At room temperature, before the laser pulse, we obtain a Young's modulus of 763 GPa, which decreases with increasing electronic temperature. For the band gap we find a value of 2.26 eV at room temperature, which increases with increasing electronic temperature and equals 3.28 eV at 28 420 K. We note that conventional means decrease the band gap of BNNTs and that a femtosecond-laser pulse is, to the best of our knowledge, the first tool that increases it. For comparison, we also present results for a (9, 0) zigzag BNNT.


Authors/Editors

Last updated on 2022-20-04 at 14:22